博客
关于我
2018HDU多校2-1010-Swaps and Inversions(hdu 6318)-逆序数,树状数组
阅读量:281 次
发布时间:2019-03-01

本文共 295 字,大约阅读时间需要 1 分钟。

数列处理问题:最小花费计算方法

在处理数列时,可以选择两种方式:每次交换相邻元素花费y元,或者处理每个逆序数花费x元。目标是找到最小的总花费。

关键思路是分析交换次数对逆序数的影响。交换一次相邻元素最多只能减少一个逆序数,因此可能存在两种情况:全部交换或不交换。这种情况下,只需计算逆序数总数即可决定选择哪种方式。

使用树状数组高效计算逆序数。将数列从大到小排序,记录每个数出现的位置。每次选最大数,若前面有其他数,则有逆序数。累加这些逆序数得到总数。

代码实现了这一思路,计算逆序数后,比较两种花费方式,取较小值输出。

改进空间包括更复杂的交换策略,但目前的方法在时间复杂度上已足够高效。

转载地址:http://daco.baihongyu.com/

你可能感兴趣的文章
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>